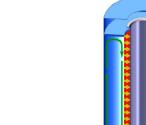
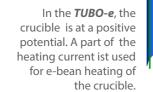
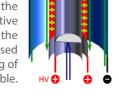

TUBO Effusion Sources*


Instead of a wire filament, the **TUBO** source uses a tubular filament that encloses the entire crucible. The heating current flows along the source axis, up through the heat insulation shields and down through the filament. The crucible temperature is controlled via a thermocouple at the bottom of the crucible. This concept enables a reproducible temperature control of a standard effusion source at a high temperature range so far only accessible with e-beam evaporation. For extremely high temperatures, the **TUBO-e** includes an electron emission booster heater.


C B Si Sc Ti V Cr Fe Co Ni Cu Ge Y Rh Pd Cd La Ce Pr Nd Gd Tb Dy Lu Pt Au

TYPE	TUBO	TUBO -e		
TEMPERATURE RANGE	200 - 2100 °C	200 - 2400 °C		
HEATING SYSTEM	Resistive cylinder heating	Hybrid resistive cylinder and e-beam heating		
TEMPERATURE STABILITY	0.1	°C		
MAX. OUTGAS. TEMPERATURE	2100 °C	2400 °C		
FLANGE SIZE	DN 40 CF	63 100		
MAX. POWER	1100 W	1700 W		


- Integrated shutter
- Water cooling
- Crucible inserts
- Face down version

High Temperature Cell (HTC)

The conventional High Temperature Cell is designed to evaporate materials with low vapor pressure at temperatures up to 2000 °C. The hot area of the effusion cell is made entirely from tantalum and tungsten. The cell is characterized by its stability and durability.

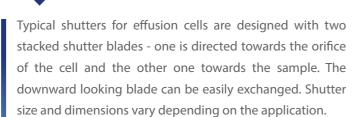
B C Si Sc Ti V Cr Fe Co Ni Cu Ge Y Rh Pd Cd La Ce Pr Nd Gd Tb Dy Lu Pt Au

ТҮРЕ	HTC 1700 2000
TEMPERATURE RANGE	100 - 1700 °C 100 - 2000 °C
HEATING SYSTEM	Radiation heating, self-supported wire filament
TEMPERATURE STABILITY	≤ 0.1 °C
MAX. OUTGAS. TEMP.	2100 °C
FLANGE SIZE	DN 40 CF 63 100 160
MAX. POWER	450 W

EVAPORATORS

Additional equipment for Evaporators

Water Cooling Systems



CreaTec offers custom designed water cooling systems for evaporators and MBE systems.

	TYPE	WK
	MATERIAL	Stainless steel
	COOLING MEDIUM	Water alcohol 2 - 5 l/min 1 - 2 bar
	FLANGE SIZE	DN 40 CF 63 100
	DESIGN AND GEOMETRY	as specified
	WATER CONNECTION	Standard tube 6 x 1 or as specified

Effusion Cell Shutters

www.createc.de

ТҮРЕ	SH
WORKING PRINCIPLE	Rotary shutter (others on request)
FLANGE SIZE	DN 16 CF 40 63
BLADE MATERIAL	Molybdenum, Tantalum, PBN or PGR
ROD MATERIAL	Molybdenum
DESIGN AND GEOMETRY	as specified
ACTUATOR	Manual (SH-M), pneumatical (SH-P) or electrical (SH-E)

Crucibles

Crucibles are available for all common MBE systems and effusion cells in a large variety of sizes and materials:

- Tantalum (Ta)
- Molvbdenum (Mo)
- Pyrolytic boron nitride (PBN)
- Beryllium oxide (BeO)
- Ouartz (SiOx)
- Tungsten (W)
- Pure graphite (Gr)
- Pyrolytic graphite (PGr) ■ Vitreous carbon (VC)
- Aluminum oxide (Al₂O₃)
- Yttrium oxide (Y₂O₃)
- Iridium (Ir)
- High temp. stainless steel

► Visit www.createc.de for more information and a complete overview of our products, e.g. linear effusion cells, gas sources and multi cells.

Evaporators

CreaTec offers a wide range of evaporating components

CREATEC ENGINEERING SCIENCE

General Information

CreaTec Evaporators are used in ultra-high vacuum (UHV) evaporation systems to generate ultrapure molecular and atomic beams from a large variety of elements and compounds. The different types of evaporators are manufactured to evaporate almost every material. Operating temperatures can range from: -80 °C to 2400 °C.

Our principle is your success

in an UHV environment.

Our effusion cells are assembled under Class 10 cleanroom conditions. The consequent use of ultrapure materials as well as the rigorous cleaning and outgassing of all parts are self-evident during our manufacturing process. Helium leak testing and maximum heating temperatures are performed

Our custom design is your flexibility

- We design and develop cells in close collaboration with the customers
- Our effusion cells are compatible with MBE systems from all worldwide suppliers
- Integrated shutters and water cooling systems are optional
- Facedown versions can be realized for almost every

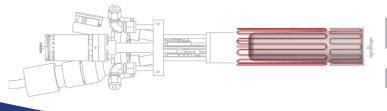
www.createc.de www.createc.de

^{*} Technology patent-registered. Developed in collaboration with Paul-Drude-Institut, Berlin.

Electron Beam Evaporator (EBE)

The CreaTec Electron Beam Evaporator is designed for evaporation of low vapor pressure materials - either from wire, rod or crucible - under true UHV conditions. A high precision control unit is used for the instantaneous variation of all necessary parameters. The **EBE-C version is used for carbon doping** in MBE applications. A pyrolytic graphite rod is heated by electron bombardement to a maximum temperature to evaporate elemental carbon of highest purity. The design prevents any ionized species leaving the source.

Si Fe Co Ni Cu Zr Nb Mo Ru Rh Pd Pr Tb Ho Hf Ta W Re Os Ir Pt Au Ti MgF₂ CaF₂ MgO


ТҮРЕ	EBE-ST	EBE-C	EBE-AX	EBE-L	
TEMPERATURE RANGE	up to 2700 °C	200 - 2200 °C	up to 2700 °C	up to 2700 °C	
HEATING SYSTEM	E-beam heating bombard- ment; self-supported wire filament	E-beam heating bombard- ment; self-supported wire filament	F-neam nomnardment	E-beam bombardment; wire filament	
EVAPORATION FROM	rod or 0,8 cc crucible	rod or 0,8 cc crucible pyrolitic graphite rod		7/15 cc crucible	
MAX. VOLTAGE TARGET	SET 1 kV 1,5 kV		8 kV	10kV	
MAX. POWER	0,3 kW	1,7 kW	4 kW	6kW	
FLANGE SIZE DN 40 CF 63 or specified		DN 40 CF 63 or specified	DN 40 CF 63 100 or specified	DN 160 CF 200	

- Different conductive crucible and rod materials
- RS-232 interface for software control
- Shutter upgrade
- Spare filament
- Special retract-unit for differencial pumping

Dual Filament Cell (DFC)

The Dual Filament Cell evaporates materials such as gallium, indium and copper. To prevent material condensation, an additional heating unit with an extra thermocouple is installed near the orifice. This allows independent adjustmet of the orifice temperature and the main temperature of the effusion cell.

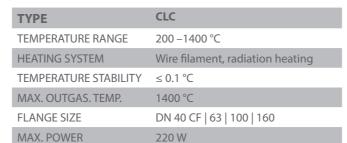
Sc Ti Mn Cu Ga Ge Se In Sn Te Nd Sm Gd

Dy Er TI Pb Compounds for CIGS

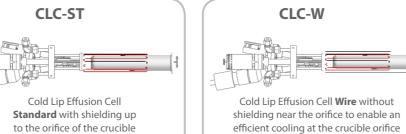
TYPE	DFC
TEMPERATURE RANGE	200 – 1400 °C bulk zone 200 – 1400 °C hot-lip
HEATING SYSTEM	Wire filament, radiation heating
TEMPERATURE STABILITY	≤ 0.2 °C
MAX. OUTGAS. TEMP.	1500 °C bulk zone 1500 °C hot-lip
FLANGE SIZE	DN 40 CF 63 100 160
MAX POWER	480 W

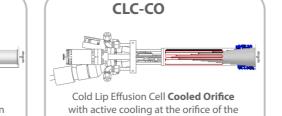
Single Filament Cell (SFC)

The Single Filament Cell is designed for evaporation of materials such as germanium, tin, gold and silicon. The heating system is surrounded by a shielding to minimize heat radiation. Direct heat transfer from the filament to the crucible reduces the power consumption and gives an excellent flux


Be Si Cu Ga Ge Ag In Ba Nd Sn Gd Dy Er Tm Au Bi Compounds for CIGS

TYPE	SFC
TEMPERATURE RANGE	50 –1400 °C
HEATING SYSTEM	Wire filament, radiation heating
TEMPERATURE STABILITY	≤ 0.1 °C
MAX. OUTGAS. TEMP.	1500 ℃
FLANGE SIZE	DN 40 CF 63 100 160
MAX. POWER	360 W


Cold Lip Cell (CLC)


The Cold Lip Cell is designed to evaporate aluminium, which tend to creep out of the crucible due to the wet of the crucible surface. The cold orifice results in a long cell lifetime and a low defect concentration in the epitaxial layers.

crucible. This is the most efficient way to

cool this area of the cell

Cracker Cell (CRC)

The Cracker Cell integrates evaporation and cracking of materials that are typically evaporated as molecules. A special heating system is attached to the top of the cell for much higher temperatures than the evaporation temperature. Special insulation parts are used to minimize crosstalk between the two heating stages.

S As Se Sb Te

	TYPE	CRC
	TEMPERATURE RANGE	100 – 1000 °C bulk zone 100 – 1200 °C cracker
	HEATING SYSTEM	Wire filament, radiation heating
	TEMPERATURE STABILITY	≤ 0.1°C
	MAX. OUTGAS. TEMP.	1500 ℃
	FLANGE SIZE	DN 40 CF 63 100 160
	MAX. POWER	400 W

Valved Cracker Cell (V-CRC)

The Valved Cracker Cell combines evaporation and cracking of elements such as arsenic, selenium and tellurium. This cell has an integrated valve to reproducibly control and rapidly change the beam flux by more than two orders of magnitude. The valve is located at the orifice and is heated to prevent any condensation of material.

Na Mg K Ca Zn As Se Sr Cd Sb Te Ba

ТҮРЕ	V-CRC
TEMPERATURE RANGE	100 – 1000 °C bulk zone 100 – 1200 °C cracker
HEATING SYSTEM	Wire filament, radiation heating
TEMPERATURE STABILITY	≤ 0.1 °C
MAX. OUTGAS. TEMP.	1500 ℃
FLANGE SIZE	DN 40 CF 63 100 160
MAX. POWER	400 W

Low Temperature Cell (LTC)

The Low Temperature Cell evaporates materials with a high vapor pressure such as arsenic, antimony, selenium and zink. Crucibles with large capacity allow long lasting operation. A special heating system design enables a high stability of the molecular beam flux.

Li	Na	Mg	S	К	Ca	Mn	Zn	As	Se	Rb	Sr
Cd	Sn	Sb	Ва	Eu	Yb	TI	Pb	Bi			

TYPE	LTC
TEMPERATURE RANGE	50 – 1200 °C
HEATING SYSTEM	Wire filament, radiation heating
TEMPERATURE STABILITY	≤ 0.1 °C
MAX. OUTGAS TEMP.	1500 ℃
FLANGE SIZE	DN 40 CF 63 100 160
MAX. POWER	220 W

OLED Effusion Cell

The OLED Effusion Cell is designed to evaporate organic materials. The heating element with double windings at the orifice avoids recondensation of material. The integrated water cooling design is optimized for an exact temperature control from ambient temperature up to 800 °C. A multi cell version with up to four effusion cells integrated on one flange enables complex processes with a compact application.

Alq₃ P₃HT PCBM

YPE	OLED
EMPERATURE RANGE	30 – 800 °C
HEATING SYSTEM	Wire filament, radiation heating
EMPERATURE STABILITY	≤ 0,1 °C
MAX. OUTGAS. TEMP.	1500 °C
LANGE SIZE	DN 40 CF 63 100 160
MAX. POWER	160 W

Ultra Low Temperature Cell (ULTC)

The Ultra Low Temperature Cell evaporates various materials in a very low temperature range. The crucible is surrounded by a cooling coil to reach ultra low temperatures and a heating element to control the flux of the condensated material. The coil is cooled by dry nitrogen.

I Cs Hg Special OLED compounds

TEMPERATURE RANGE -80 – 30 °C Wire filament, radiation heating TEMPERATURE STABILITY ≤ 0,1 °C MAX. OUTGAS. TEMP. 250 °C **COOLING SYSTEM** Copper coil FLANGE SIZE DN 40 CF | 63 | 100 | 160 MAX. POWER 50 W

Power Supplies

These control units are designed to heat effusion cells or to be used with any other application. Each power source is controlled by a precision PID controller from Eurotherm. Load voltage and current are displayed, as well as power and resistance. The power cord to the heater is bakeable up to 200 °C.

- Adapted power range
- Additional temperature display
- Interface: RS232, RS485, TCP/IP or Profibus
- Interlock
- Shutter Control with EPS
- Voltage/Current monitor via Ethernet

PS - S800 | S1500 | D800 INPUT VOLTAGE 110-130 or 200-254 VAC (47-64Hz) EUROTHERM CONT. OUTPUT VOLTAGE up to 60 V up to 200 A MAX. OUTPUT POWER 800 W | 1500 W DC (or specified) 19" x 3 HE x 407 mm OPTIONAL E-BEAM up to 3kV

